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We propose a discrete solid-on-solid model of interface having a specific type of bending rigidity; this type
of bending rigidity was introduced originally by Widom@J. Chem. Phys.84, 6943~1986!# to account for the
energy cost associated with the bending of the oil-water interface in a lattice model of ternary microemulsions.
We calculate the width of the interface as well as various height-height and normal-normal correlation func-
tions through Monte Carlo simulation. We show that when this specific ‘‘bending energy’’ alone controls the
out-of-plane thermal fluctuations of our discrete interface, the membrane is crumpled at all nonvanishing
temperatures, but the nature of this crumpling is very different from that observed in the standard continuum
models. We also show the effects of a pinning potential and present results on some nonequilibrium properties
of the model.@S1063-651X~96!08508-X#

PACS number~s!: 68.10.2m, 82.70.2y

I. INTRODUCTION

Amphiphilic molecules consist of a ‘‘hydrophilic head’’
and a ‘‘hydrophobic tail’’; the polar head prefers to be in
contact with water, whereas the hydrocarbon chain constitut-
ing the tail tends to minimize contact with water@1#. There-
fore, in a ternary microemulsion consisting of water, oil, and
amphiphiles, a monolayer of amphiphiles is formed at the
oil-water interface in such a way that the heads of the am-
phiphiles remain in contact with water while the tails remain
dipped in oil @2#. Similarly, amphiphiles form bilayers in an
aqueous medium; the amphiphiles in the two constituent
monolayers of the bilayer are oppositely oriented so that the
hydrophobic tails of all the molecules remain inside, thereby
minimizing contact with water. The plasma membrane of red
blood cells is a prototype example of such bilayers@3#. The
monolayers and bilayers of amphiphilic molecules are often
referred to as amphiphilic membranes.

The nature of the out-of-plane thermal fluctuations of in-
terfaces and amphiphilic membranes as well as their effects
on the equilibrium conformations have been investigated ex-
tensively over the last ten years@4–10# In the case of fluid
interfaces, these fluctuations are controlled by the interfacial
tension. On the other hand, the effective interfacial tension of
amphiphilic membranes can be vanishingly small and, there-
fore, their out-of-plane thermal fluctuations are controlled by
the bending rigidity@11#. The interfaces can exhibit a transi-
tion from a ‘‘smooth’’ phase to a ‘‘rough’’ phase at a tem-
perature known as the roughening temperature@12#. Simi-
larly, depending on the nature of the in-plane ordering, an
amphiphilic membrane can exhibit acrumpledphase at suf-
ficiently high temperatures@4–10#

The roughening and crumpling of isolated planar mem-
branes have been studied using models in the solid-on-solid
~SOS! approximation; there are neither ‘‘overhangs’’ nor
‘‘droplets’’ of the minority phase inside the majority phase
in a SOS model. The results obtained from the discrete and
continuum models of interfaces have been found to be quali-
tatively consistent with each other@13#. In this paper we
propose a discrete SOS model for amphiphilic membranes,
where the bending energy of the membrane is incorporated

following a prescription suggested earlier by Widom@14# in
order to account for the bending rigidity of the membrane at
the oil-water interface in a lattice model of ternary micro-
emulsions.~We use the terms interface and membrane inter-
changeably!. We study the out-of-plane thermal fluctuations
of this discrete SOS model using Monte Carlo~MC! simula-
tions. We also investigate some dynamical aspects of this
model through MC simulation and compare the results with
the corresponding results derived analytically using a master
equation approach.

II. MODEL

For simplicity, we formulate the model as a one-
dimensional membrane~a curve! embedded in a two-
dimensional space. Suppose the sites on a one-dimensional
lattice parallel to theX axis ~assumed horizontal! are labeled
by the integersi ( i51,2,3,. . . ,L) and the height of the
membrane, measured from the reference horizontal line, is
given by a single valued height function;hi , the height at the
i th site, can take only integer values. Ifhi is constant and
independent ofi , then the membrane is flat everywhere. On
the other hand, unequal heights at neighboring sites gives
rise to bending of the interface; these bends are identical to
the bendings of the amphiphilic monolayer at the oil-water
interface in the Widom model.

The Hamiltonian for the model membrane proposed here
is given by

H5 j(
i

uhi2hi11u1k(
i

~12dhi ,hi11
!, ~1!

wheredhi ,hi11
is the Kroneckerd function and the constant

k is a measure of the bending stiffness of the membrane.
However, note that an energy costk is associated here with
every bending of the interface over a single lattice spacing,
which is also assumed to be identical to the linear size of all
the molecules in the system@15#. In the limit k50, this
model reduces to the standard SOS model of an interface.
This SOS model is quite different from the two SOS ap-
proximations to the Widom model introduced earlier by
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Kahng et al. @16#. A comparison of the model of Kahng
et al. and the model~1! proposed here will be made later in
this paper. Our aim is to elucidate the consequences of the
difference in describing the bending in the ‘‘continuum sce-
nario’’ and ‘‘discrete scenario.’’

We have applied the periodic boundary condition, i.e.,
hL1 i5hi . In our MC simulation the system is allowed to
evolve, starting from a specific initial condition, following
the standard Metropolis algorithm@17#. We work with the
parametersJ5 j /(kBT) andK5k/(kBT), whereT is the tem-
perature andkB , the Boltzmann constant, is chosen to be
unity in our units. Note that if the magnitudes ofJ andK are
increased~decreased! simultaneously keeping the ratioJ/K
constant, it effectively mimics a decrease~increase! of the
temperature for fixedj andk.

III. DEFINITIONS OF THE CHARACTERISTIC
QUANTITIES OF INTEREST

The widthW of the interface is defined through the rela-
tion

W2~L,t !5$^@hi~ t !2^h&#2&%av, ~2!

wherehi(t) ( i51,2, . . . ,L) is the height at thei th site at
time t, the symbol̂ X& implies the average ofX over all the
lattice sites, i.e.,̂ X&5(1/L)( i51

L Xi , whereas the symbol
$Y%av implies average ofY over a large number of MC runs.
The quantityW(L,t) is monitored, for fixedL, as a function
of time t; W(L,`) is the width of the system in equilibrium.

We have also computed three different correlation func-
tions. Theheight-heightcorrelation functionC(x) is defined
as

C~x!5@~h02hx!
2#av. ~3!

The correlation functionG(x) is defined as

G~x!5@~h02^h&!~hx2^h&!#av. ~4!

In the continuum formulation, de Gennes and Taupin@18#
studied the correlation between the normals to the membrane
at two spatially separated points. We have introduced a dis-
crete counterpart of this normal-normal correlation appropri-
ate for our discrete model. Only three directions are possible
for the normal to our discrete interface—it can be directed
either towards the left (2 x̂) or the right (x̂), or it can be
vertical. Therefore, we can define the ‘‘normal’’ni as fol-
lows:

ni511 if hi.hi11 ,

ni50 if hi5hi11 ,

ni521 if hi,hi11 .

In terms of these ‘‘normals’’ thenormal-normal correlation
functionN(x) for our discrete model is defined as

N~x!5@n0nx#av. ~5!

IV. RESULTS AND DISCUSSION

In order to test our algorithm and computer program we
have calculatedW(L,`) as a function ofL first in the special
caseK50, J51.5, i.e., for the standard SOS model. From
Fig. 1 we find that in this special case ofJÞ0, W(L,`)
}AL, in agreement with the known result for the standard
SOS model.

Next, we computed the width of the interface as a func-
tion of L for the more general caseKÞ0. JÞ0 simulta-
neously. In order to test the effect of nonvanishingK on the
roughness of the SOS interface we chose the same value of
J, namely,J51.5, as before, whileK was chosen to be 1.0.
It is clear from Fig. 1 that the nonvanishing bending rigidity
tends to suppress the out-of-plane thermal fluctuations
thereby reducing the width of the interface, but the roughen-
ing exponent remains the same as in the special caseK50.
In other words, in the general cases, when bothJ andK have
nonvanishing values, the interface is rough but not crumpled.

The advantage of the SOS model~1! is that one can
‘‘switch off’’ J and thus choosing nonvanishingK can have
a discrete model of interface with purely bending rigidity
only. Therefore, we next computedW(L,t) in the other spe-
cial caseJ50, KÞ0. We found thatW(L,t) kept increasing
forever with increasing timet. In Fig. 2 the solid curves
representW(L,t), plotted againstL1/2 for three different val-
ues oft, whenK53.0; the corresponding data forK51.0 are
shown by the dashed curves in the same figure. Note that
smallerK corresponds to an effectively higher temperature
T. From Fig. 2 it is clear that~a! for a fixedL the interface is
wider at a higher temperature than at a lower temperature
after the elapse of the same time interval beginning from the
flat conformation att50, and~b! at any givent, W is inde-
pendent ofL butW(L,t)→` as t→` for all L.

Thus the actual area of the membrane in equilibrium is
infinitely large, if J50 but KÞ0, at all TÞ0, even for all
finite values of the basal area (L in d51). Does it necessarily

FIG. 1. The equilibrium widthW of the interface plotted against
L1/2 for two different sets of values of the parametersJ and K,
namely,J51.5,K50.0 andJ51.5,K51.0. The lines through the
data points are the corresponding best straight-line fits.
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imply that the membrane is crumpled at all nonvanishing
temperatures?

In order to answer this central question we shall now sum-
marize the three different definitions of crumpling. All these
definitions yield identical results when applied to standard
continuum models of membranes and, therefore, are usually
regarded as equivalent; however, our discrete lattice model,
with J50 andKÞ0, satisfies the criterion of crumpling set
by one of these definitions, but appears to be smooth when
examined against the two other definitions.~i! If the ratio of
the excess areadA created by thermal fluctuations and the
original basal areaA of the membrane diverges in the ther-
modynamic limit, the membrane is crumpled. This criterion
of crumpling is certainly satisfied by our lattice model~1! at
all TÞ0 if J50 but KÞ0. ~ii ! If the interfacial widthW
scales asW;Lz with z.0, the membrane is rough. More-
over, if z.1 for L!jp , wherejp is the persistence length
@18#, then the membrane is crumpled on length scales much
longer thanjp ; thus all crumped membranes are rough but
the converse is not necessarily true@7#. From Fig. 2 we con-
clude that, after very early times~when no clear trends
emerge due to the presence of transients!, one can extract an
effective roughening exponentzeff for all longer times, and
one finds thatzeff50. This, however, would imply that at all
times, except the very early stages, during its growth the
membrane remains effectively smooth.~iii ! If the correlation
between the normals to the membrane at two spatially sepa-
rated points followŝ nW (rW)nW (0)&;er /jp, then the membrane
is defined as crumpled on length scales much larger than
jp @18#. But we neither find any exponential decay in the
‘‘normal-normal correlation function’’N(x) nor observe any
qualitative difference inN(x) computed forK51.0 and
K55.0 @see Figs. 3~a! and 3~b!#, which correspond to an
interface of fixed bending rigidityk at two different effective
temperatures.

In Figs. 4~a! and 4~b! we present the height-height corre-
lation functionC(x) for K55.0 andK51.0, respectively.
The corresponding correlation functionsG(x) are plotted in
Figs. 5~a! and 5~b!, respectively. Noting, as before, that
K51.0 corresponds to an effectively higher temperature than
K55.0 for the same fixed bending stiffnessk, we conclude
that the only effect of a higher temperature in both these
figures is the larger magnitude of the corresponding correla-
tion function.

In order to understand these unusual features of the out-
of-plane thermal fluctuations in model~1!, let us compare
schematic typical configurations for this model with those of
standard continuum models. Since wiggles exist in the rough
phase of the continuum model on all length scales~smaller
wiggles are part of the bigger ones which, in turn, are parts
of even bigger ones, and so on! the width increases with
increasingL. The absence of wiggles of all sizes leads to
z50 in our lattice SOS model. Moreover, it is obvious from
these schematic representations of typical configurations
why the normal-normal correlation exhibits a periodicity in
our lattice SOS model. Note that the diverging area of the
lattice membrane in equilibrium arises from the diverging
area ~length in d51) of the vertical regions of the mem-
brane.

Now, one may be curious to find out the effect of a pin-

FIG. 2. The widthW of the interface plotted againstL1/2 for the
parameter valuesJ50.0, K53.0 ~full curves! andJ50.0, K51.0
~dashed curves! at three different times, namely,t51000,
t52000, andt55000 Monte Carlo steps.

FIG. 3. The ‘‘normal-normal correlation function’’N(x) for ~a!
K55.0, ~b! K51.0.
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ning potential, e.g., gravity, on the equilibrium structure of
the interface. We choose the pinning potential to be
g( i51

L uhi u, where the constantg determines its strength.
From now on, the symbolG will denoteG5g/(kBT). In the
standard SOS limit, i.e., whenK50 but JÞ0, we observe
that ~Fig. 6! the interface becomes smooth, even for pinning
potentials as weak asG50.015. In the other limiting case,
namely,J50, butKÞ0, we found that~Fig. 7! even pinning
potentials as weak asG50.03 lead to a finite value of the
width of the interface in equilibrium. Moreover, since the
pinning potential tends to suppress out-of-plane thermal fluc-
tuations, the larger value ofG leads to a smaller value of the
equilibrium thickness of the interface.

In the absence of any pinning potential we did not observe
any qualitative difference in the correlation functions at dif-
ferent temperatures, except the difference in their magni-
tudes. But, in the presence of a nonvanishing pinning poten-
tial, we observed interesting qualitative differences in the
nature of the correlation functions evaluated at different tem-
peratures. The correlation functionsN(x), C(x), andG(x)
are plotted in Figs. 8–10, respectively, in each of which part
~a! corresponds toK54.0,G50.4, whereas part~b! corre-
sponds toK51.0,G50.1. Note that the effective tempera-
ture of the system corresponding to parts~b! is four times
that of parts~a! in each of Figs. 8–10. Clearly, there are

FIG. 4. The ‘‘height-height correlation function’’C(x) for ~a!
K55.0, ~b! K51.0.

FIG. 5. The correlation functionG(x) for ~a! K55.0, ~b!
K51.0.

FIG. 6. The equilibrium widthW of the interface plotted against
L1/2 for two different sets of the parametersJ, K, andG, namely,
J51.5,G50.015, andK50.0 andJ51.5,G50.15, andK50.0.
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wider flat portions of the interface at lower temperatures in
equilibrium.

Finally, we studied the dynamics of the model interface
analytically @19# in the special limitJ50, G50, butKÞ0,
by using a standard master equation approach@20#. The
width was found to grow with time following the ‘‘growth
law’’ W2}t. Our MC data in Fig. 11 are consistent with this
growth law.

We can now compare our model with the model of Kahng
et al. @16#. The special SOS models considered by Kahng
et al.donot include any bending energy of the type included
in our model. Thus, interactions in their SOS models are
similar to the first term on the right-hand side of our Eq.~1!.
But, in addition to the interaction between the nearest-
neighbor columns, they also allow interactions between
farther-neighbor pairs of columns; the latter was motivated
by the similar farther-neighbor interactions between the spin
pairs in the Widom model@14#. The roughening of the inter-
face in the Widom model has been investigated in two di-
mensions recently by Maiti and Chowdhury@21#.

One common feature of our model and the Widom model
@14# is that there are bending energies associated with bend-
ings over one lattice spacing, which is assumed to be identi-
cal to the size of each molecule. Another lattice model,
which associates bending energies over bendings of the in-

FIG. 7. The equilibrium widthW of the interface plotted against
L1/2 for two different sets of the parametersJ, K, andG, namely,
K51.0,G50.03, andJ50.0 andK51.0,G50.15, andJ50.0.

FIG. 8. The ‘‘normal-normal correlation function’’N(x) for ~a!
K54.0,G50.4, ~b! K51.0,G50.1.

FIG. 9. The ‘‘height-height correlation function’’C(x) for ~a!
K54.0,G50.4, ~b! K51.0,G50.1.
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terface over single lattice spacings, has been found to mimic
reliably the energies associated with bendings of interfaces
over truly molecular dimensions@22#. However, the reliabil-
ity of such bending energies in mimicking the energies asso-
ciated with bendings over longer length scales remains to be
explored in detail.

V. CONCLUSION

In this paper we have proposed a discrete model of an
interface with a specific form of the bending energy: this

bending energy is associated with bending of the interface
over as short a length scale as the size of a molecule. When
the out-of-plane thermal fluctuations of this interface are
controlled only by this bending stiffness, it is crumpled, but
the nature of the crumpling is very different from that ob-
served in the continuum models. We have shown that al-
though the conformation of the interface in this case satisfies
one particular definition of a crumpled manifold, it does not
satisfy two other widely used definitions of crumpling al-
though all these three dimensions are known to be mutually
consistent when applied to the continuum models.
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