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Discrete solid-on-solid model of interface with bending rigidity: Roughening versus crumpling
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We propose a discrete solid-on-solid model of interface having a specific type of bending rigidity; this type
of bending rigidity was introduced originally by Widopd. Chem. Phys34, 6943(1986)] to account for the
energy cost associated with the bending of the oil-water interface in a lattice model of ternary microemulsions.
We calculate the width of the interface as well as various height-height and normal-normal correlation func-
tions through Monte Carlo simulation. We show that when this specific “bending energy” alone controls the
out-of-plane thermal fluctuations of our discrete interface, the membrane is crumpled at all nonvanishing
temperatures, but the nature of this crumpling is very different from that observed in the standard continuum
models. We also show the effects of a pinning potential and present results on some nonequilibrium properties
of the model[S1063-651X96)08508-X

PACS numbsgps): 68.10—m, 82.70-y

I. INTRODUCTION following a prescription suggested earlier by Widoid] in
order to account for the bending rigidity of the membrane at

Amphiphilic molecules consist of a “hydrophilic head” the oil-water interface in a lattice model of ternary micro-
and a “hydrophobic tail”; the polar head prefers to be in emulsions(We use the terms interface and membrane inter-
contact with water, whereas the hydrocarbon chain constituchangeably We study the out-of-plane thermal fluctuations
ing the tail tends to minimize contact with wafdr]. There- ~ Of this discrete SOS model using Monte CafléC) simula-
fore, in a ternary microemulsion consisting of water, oil, andtions. We also investigate some dynamical aspects of this
amphiphiles, a monolayer of amphiphiles is formed at th@model through MC simulation and compare the results with
oil-water interface in such a way that the heads of the amthe corresponding results derived analytically using a master
phiphiles remain in contact with water while the tails remain€duation approach.
dipped in 0il[2]. Similarly, amphiphiles form bilayers in an
aqueous medium; the amphiphiles in the two constituent Il. MODEL
monolayers of the bilayer are oppositely oriented so that the S
hydrophobic tails of all the molecules remain inside, thereby,. For .S|mpI|C|ty, we formulate the model as a one-
minimizing contact with water. The plasma membrane of reod!mens!onal membranda curve gmbedded in a two-
blood cells is a prototype example of such bilaysk The dimensional space. Suppose the sites on a one-dimensional

monolayers and bilayers of amphiphilic molecules are oftertittlce pgrallel t(.) th.é( axis (assumed horlzont}igre labeled
referred to as amphiphilic membranes. y the integers (i=1,2,3,...,L) and the height of the
The nature of the out-of-plane thermal fluctuations of in_membrane, measured from the reference horizontal line, is

terfaces and amphiphilic membranes as well as their effectgiven by a single valued height functiam;, the height at the

on the equilibrium conformations have been investigated ex!—th site, can take only integer values.fif is constant and

tensively over the last ten yeaf4—10] In the case of fluid independent of, then the membrane is flat everywhere. On

interfaces, these fluctuations are controlled by the interfacidf’® Other hand, unequal heights at neighboring sites gives

tension. On the other hand, the effective interfacial tension ofiS€ t0 bending of the interface; these bends are identical to

amphiphilic membranes can be vanishingly small and, there’® Pendings of the amphiphilic monolayer at the oil-water

fore, their out-of-plane thermal fluctuations are controlled byintérface in the Widom model.

the bending rigidityf 11]. The interfaces can exhibit a transi- . The Hamiltonian for the model membrane proposed here
tion from a “smooth” phase to a “rough” phase at a tem- IS 9iven by

perature known as the roughening temperafd@. Simi-

larly, ergnding on the nature .of the in-plane ordering, an H:jz |hi_hi+1|+k2 (1_5hi 'hi+1)’ (1)
amphiphilic membrane can exhibitcaumpledphase at suf- [ i

ficiently high temperaturegl—10] . ]

The roughening and crumpling of isolated planar mem-Whered, . is the Kroneckers function and the constant
branes have been studied using models in the solid-on-solikl is a measure of the bending stiffness of the membrane.
(SO9 approximation; there are neither “overhangs” nor However, note that an energy cdsts associated here with
“droplets” of the minority phase inside the majority phase every bending of the interface over a single lattice spacing,
in a SOS model. The results obtained from the discrete andhich is also assumed to be identical to the linear size of all
continuum models of interfaces have been found to be qualithe molecules in the systefi5]. In the limit k=0, this
tatively consistent with each oth¢f3]. In this paper we model reduces to the standard SOS model of an interface.
propose a discrete SOS model for amphiphilic membraneshis SOS model is quite different from the two SOS ap-
where the bending energy of the membrane is incorporategroximations to the Widom model introduced earlier by
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Kahng et al. [16]. A comparison of the model of Kahng 12.00
et al. and the mode(1) proposed here will be made later in
this paper. Our aim is to elucidate the consequences of the
difference in describing the bending in the “continuum sce-
nario” and “discrete scenario.”

We have applied the periodic boundary condition, i.e., 800

Lliriven
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h, .i=h;. In our MC simulation the system is allowed to =
evolve, starting from a specific initial condition, following <
the standard Metropolis algorithfii7]. We work with the % 5.00 -
parameterd=j/(kgT) andK=k/(kgT), whereT is the tem- =

perature andkg, the Boltzmann constant, is chosen to be
unity in our units. Note that if the magnitudes bandK are
increaseddecreasedsimultaneously keeping the ratibK
constant, it effectively mimics a decrea@acrease of the 200
temperature for fixed andk.
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. The widthW of the interface is defined through the rela- FIG. 1. The equilibrium widtiW of the interface plotted against
tion L2 for two different sets of values of the parametdrand K,
) 5 namely,J=1.5,K=0.0 andJ=1.5,K=1.0. The lines through the
WAL, 1) ={({[hi(t) —(h)]) }av, (2)  data points are the corresponding best straight-line fits.
whereh;(t) (i=1,2,...,L) is the height at theth site at IV. RESULTS AND DISCUSSION
time t, the symbok X) implies the average of over all the _
lattice sites, i.e.(X)=(1/L)S-_,X;, whereas the symbol In order to test our algorithm and computer program we

{Y1,, implies average of over a large number of MC runs. have calculateMV(L,'oo) as a function ot first in the special

The quantityW(L,t) is monitored, for fixed_, as a function caseK=0,J=15, i.e, for the standard SOS model. From

of time't; W(L, ) is the width of the system in equilibrium. Fig. 1 we find that in this special case a0, W(L,)
We have also computed three different correlation funcvL, in agreement with the known result for the standard

tions. Theheightheightcorrelation functiorC(x) is defined ~SOS model.
as Next, we computed the width of the interface as a func-

tion of L for the more general cadé+0. J#0 simulta-
C(X)=[(hg—hy )] ay- (3)  neously. In order to test the effect of nonvanishidgn the
roughness of the SOS interface we chose the same value of
J, namely,J= 1.5, as before, whil& was chosen to be 1.0.
It is clear from Fig. 1 that the nonvanishing bending rigidity
(4) tends to suppress the out-of-plane thermal fluctuations
thereby reducing the width of the interface, but the roughen-

In the continuum formulation, de Gennes and Taufiif] ing exponent remains the same as in the special Kas8.

studied the correlation between the normals to the membraH@ other_ wqrds, in the gen_eral cases, when bibitndK have
nonvanishing values, the interface is rough but not crumpled.

at two spatially separated points. We have introduced a did? :

crete counterpart of this normal-normal correlation appropri-, T_heh a?f\,/’ar‘;tag((aj %f theh SO.S modd) IS r:hat oneh can

ate for our discrete model. Only three directions are possibles""_'tC 0 and t US choosing nonvanis |Kgc_an ave
discrete model of interface with purely bending rigidity

for the normal to our discrete interface—it can be directec® .
either towards the left£X) or the right &), or it can be only. Therefore, we next computatl(L,t) in the other spe-

vertical. Therefore, we can define the “normali; as fol- cial caseJ_zoz K#0. We fpund thaW(L,t) kept Increasing
lows: forever with increasing time. In Fig. 2 the solid curves
representV(L,t), plotted against 2 for three different val-

ues oft, whenK = 3.0; the corresponding data flir=1.0 are
shown by the dashed curves in the same figure. Note that
smallerK corresponds to an effectively higher temperature

The correlation functiors(x) is defined as

G(X):[(h0_<h>)(hx_<h>)]av-

ni=+1 if hi>hi+1!

n=0 if hi=hi.q, T. From Fig. 2 it is clear thata) for a fixedL the interface is
_ wider at a higher temperature than at a lower temperature
n=-1 if hi<hi,;. after the elapse of the same time interval beginning from the

flat conformation at=0, and(b) at any givent, W is inde-
In terms of these “normals” theormaknormal correlation  pendent ofL but W(L,t)—o ast—o for all L.
function N(x) for our discrete model is defined as Thus the actual area of the membrane in equilibrium is
infinitely large, if J=0 butK+#0, at all T#0, even for all
N(X)=[NgNny]ay- (5) finite values of the basal area (L in=dl). Does it necessarily
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FIG. 2. The widthw of the interface plotted againkt’ for the 002
parameter valued=0.0, K= 3.0 (full curves andJ=0.0,K=1.0 ol
(dashed curves at three different times, namelyt= 1000, s
t=2000, andt=5000 Monte Carlo steps. 002 F
imply that the membrane is crumpled at all nonvanishing “*[
temperatures? 006 | |
In order to answer this central question we shall now sum- H |
marize the three different definitions of crumpling. All these  **[ H
definitions yield identical results when applied to standard , . . . . . . . : .
continuum models of membranes and, therefore, are usuallyy ° *° * % © & 00 w0

regarded as equivalent; however, our discrete lattice model,

with J=0 andK #0, satisfies the criterion of crumpling set  FIG. 3. The “normal-normal correlation functionN(x) for (a)

by one of these definitions, but appears to be smooth whelk=5.0, (b) K=1.0.

examined against the two other definitiofis.If the ratio of

the excess are@A created by thermal fluctuations and the | Figs. 4a) and 4b) we present the height-height corre-
original basal are#d of the membrane diverges in the ther- |ation function C(x) for K=5.0 andK=1.0, respectively.
modynamic limit, the membrane is crumpled. This criterionTne corresponding correlation functio@gx) are plotted in

of crumpllmg is certainly sat|§f|ed by our Iatthe chdé] at  Figs. Ha) and §b), respectively. Noting, as before, that
all T#0 if J=0 butK+0. (i) If the interfacial widthW k=1 0 corresponds to an effectively higher temperature than
scales adV~L¢ with >0, the membrane is rough. More- k=50 for the same fixed bending stiffnelsswe conclude
over, if />1 for L<&,, where; is the persistence length hat the only effect of a higher temperature in both these
[18], then the membrane is crumpled on length scales muchgyres is the larger magnitude of the corresponding correla-
longer thané; thus all crumped membranes are rough bution function.

the converse is not necessarily t{fd. From Fig. 2 we con- In order to understand these unusual features of the out-
clude that, after very early time&vhen no clear trends of-plane thermal fluctuations in modél), let us compare
emerge due to the presence of transigrise can extract an - schematic typical configurations for this model with those of
effective roughening exponedty for all longer times, and  standard continuum models. Since wiggles exist in the rough
one finds thate;=0. This, however, would imply that at all phase of the continuum model on all length scdkesaller
times, except the very early stages, during its growth theyiggles are part of the bigger ones which, in turn, are parts
membrane remains effectively smoofti.) If the correlation  gf even bigger ones, and so )othe width increases with
between the normals to the membrane at two spatially sepincreasingL. The absence of wiggles of all sizes leads to
rated points follows(n(r)n(0))~e"'%, then the membrane ¢=0 in our lattice SOS model. Moreover, it is obvious from
is defined as crumpled on length scales much larger thathese schematic representations of typical configurations
& [18]. But we neither find any exponential decay in thewhy the normal-normal correlation exhibits a periodicity in
“normal-normal correlation function’N(x) nor observe any our lattice SOS model. Note that the diverging area of the
gualitative difference inN(x) computed forKk=1.0 and lattice membrane in equilibrium arises from the diverging
K=5.0[see Figs. &) and 3b)], which correspond to an area(length ind=1) of the vertical regions of the mem-
interface of fixed bending rigiditi at two different effective  brane.

temperatures. Now, one may be curious to find out the effect of a pin-
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FIG. 4. The “height-height correlation functionCT(x) for (a)
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ning potential, e.g., gravity, on the equilibrium structure of
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FIG. 5. The correlation functiorG(x) for (a) K=5.0, (b
K=1.0.

the interface. We choose the pinning potential to be

gEiLzllhil, where the constantj determines its strength.

From now on, the symbdb will denoteG=g/(kgT). In the
standard SOS limit, i.e., whelki=0 but J#0, we observe

that (Fig. 6) the interface becomes smooth, even for pinning
potentials as weak a&=0.015. In the other limiting case,

namely,J=0, butK+# 0, we found thatFig. 7) even pinning

3.00
2.50

D—,E—’Q/MM
m}
J=1 ‘5, G=0.015

2.00

potentials as weak a8 =0.03 lead to a finite value of the
width of the interface in equilibrium. Moreover, since the
pinning potential tends to suppress out-of-plane thermal fluc-
tuations, the larger value @ leads to a smaller value of the
equilibrium thickness of the interface.

In the absence of any pinning potential we did not observe
any qualitative difference in the correlation functions at dif-
ferent temperatures, except the difference in their magni-
tudes. But, in the presence of a nonvanishing pinning poten-
tial, we observed interesting qualitative differences in the
nature of the correlation functions evaluated at different tem-
peratures. The correlation functiohngx), C(x), and G(x) T S PP R N N
are plotted in Figs. 8—10, respectively, in each of which part L1/2
(a) corresponds t&K =4.0, G=0.4, whereas pairtb) corre-
sponds toK=1.0, G=0.1. Note that the effective tempera-  FIG. 6. The equilibrium widthW of the interface plotted against
ture of the system corresponding to pafit$ is four times L% for two different sets of the parametetsK, andG, namely,
that of parts(a) in each of Figs. 8—10. Clearly, there are J=1.5,G=0.015, andK=0.0 andJ=1.5,G=0.15, andKk =0.0.
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wider flat portions of the interface at lower temperatures in
equilibrium.

Finally, we studied the dynamics of the model interface
analytically[19] in the special limitJ=0, G=0, butK+#0,
by using a standard master equation approg®i. The
width was found to grow with time following the “growth
law” W2ect. Our MC data in Fig. 11 are consistent with this
growth law.

We can now compare our model with the model of Kahng
et al. [16]. The special SOS models considered by Kahng
et al.do notinclude any bending energy of the type included
in our model. Thus, interactions in their SOS models are
similar to the first term on the right-hand side of our Ef.

But, in addition to the interaction between the nearest-
neighbor columns, they also allow interactions between
farther-neighbor pairs of columns; the latter was motivated
by the similar farther-neighbor interactions between the spin
pairs in the Widom mod€dl14]. The roughening of the inter-
face in the Widom model has been investigated in two di-
mensions recently by Maiti and Chowdhuyi31].

One common feature of our model and the Widom model
[14] is that there are bending energies associated with bend-
ings over one lattice spacing, which is assumed to be identi-
cal to the size of each molecule. Another lattice model,
which associates bending energies over bendings of the in-
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FIG. 11. The square of the interfacial width plotted against time
t for J=0.0, K=3.0, andG=0.0. The inset shows the same data
plotted against 1/to emphasize the fact that, whédrandG vanish
butK has a nonvanishing value, the interfacial width diverges in the
limit t—oo.

G(x)
o

20 1 bending energy is associated with bending of the interface
over as short a length scale as the size of a molecule. When
®) B 0 0 s w0 so o 1 @ % w0 the out-of-plane thermal fluctuations of this interface are
controlled only by this bending stiffness, it is crumpled, but
FIG. 10. The correlation functionG(x) for (@ K=4.0, the nature of the crumpling is very different from that ob-
G=0.4,(b) K=1.0,G=0.1. served in the continuum models. We have shown that al-
) ) ) ~ though the conformation of the interface in this case satisfies
terface over single lattice spacings, has been found to mimigne particular definition of a crumpled manifold, it does not
reliably the energies gssom_ated with bendings of |r)te(face§atisfy two other widely used definitions of crumpling al-
over truly molecular dimensior{22]. However, the reliabil- - {hough all these three dimensions are known to be mutually
ity of such bending energies in mimicking the energies assosgnsistent when applied to the continuum models.
ciated with bendings over longer length scales remains to be
explored in detail.
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